三角函数与反三角函数的积分,求导,和恒等变换

快速记忆

图片来自BV1si4y1R7FG,详细介绍见视频

三角函数

积分

1.\(\int \sin x \, dx = -\cos x + C\)
2.\(\int \cos x \, dx = \sin x + C\)
3.\(\int \tan x \, dx = -\ln|\cos x| + C\)
4.\(\int \cot x \, dx = \ln|\sin x| + C\)
5.\(\int \sec x \, dx = \ln|\sec x + \tan x| + C\)
6.\(\int \csc x \, dx = -\ln|\csc x + \cot x| + C\)

求导

1.\(\frac{d}{dx}(\sin x) = \cos x\)
2.\(\frac{d}{dx}(\cos x) = -\sin x\)
3.\(\frac{d}{dx}(\tan x) = \sec^2 x\)
4.\(\frac{d}{dx}(\cot x) = -\csc^2 x\)
5.\(\frac{d}{dx}(\sec x) = \sec x \tan x\)
6.\(\frac{d}{dx}(\csc x) = -\csc x \cot x\)

恒等变换

基本三角恒等式

  1. 毕达哥拉斯恒等式
    $$
    \sin^2 x + \cos^2 x = 1
    $$
    $$
    1 + \tan^2 x = \sec^2 x
    $$
    $$
    1 + \cot^2 x = \csc^2 x
    $$
  2. 倒数恒等式
    $$
    \csc x = \frac{1}{\sin x}
    $$
    $$
    \sec x = \frac{1}{\cos x}
    $$
    $$
    \cot x = \frac{1}{\tan x}
    $$
  3. 商数恒等式
    $$
    \tan x = \frac{\sin x}{\cos x}
    $$
    $$
    \cot x = \frac{\cos x}{\sin x}
    $$

角度和与差的恒等式

  1. 正弦的和与差
    $$
    \sin(a + b) = \sin a \cos b + \cos a \sin b
    $$
    $$
    \sin(a – b) = \sin a \cos b – \cos a \sin b
    $$
  2. 余弦的和与差
    $$
    \cos(a + b) = \cos a \cos b – \sin a \sin b
    $$
    $$
    \cos(a – b) = \cos a \cos b + \sin a \sin b
    $$
  3. 正切的和与差
    $$
    \tan(a + b) = \frac{\tan a + \tan b}{1 – \tan a \tan b}
    $$
    $$
    \tan(a – b) = \frac{\tan a – \tan b}{1 + \tan a \tan b}
    $$

二倍角恒等式

  1. 正弦的二倍角
    $$
    \sin(2x) = 2 \sin x \cos x
    $$
  2. 余弦的二倍角
    $$
    \cos(2x) = \cos^2 x – \sin^2 x = 2 \cos^2 x – 1 = 1 – 2 \sin^2 x
    $$
  3. 正切的二倍角
    $$
    \tan(2x) = \frac{2 \tan x}{1 – \tan^2 x}
    $$

半角恒等式

  1. 正弦的半角
    $$
    \sin\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 – \cos x}{2}}
    $$
  2. 余弦的半角
    $$
    \cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 + \cos x}{2}}
    $$
  3. 正切的半角
    $$
    \tan\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 – \cos x}{1 + \cos x}} = \frac{\sin x}{1 + \cos x} = \frac{1 – \cos x}{\sin x}
    $$

三倍角恒等式

  1. 正弦的三倍角
    $$
    \sin(3x) = 3 \sin x – 4 \sin^3 x
    $$
  2. 余弦的三倍角
    $$
    \cos(3x) = 4 \cos^3 x – 3 \cos x
    $$
  3. 正切的三倍角
    $$
    \tan(3x) = \frac{3 \tan x – \tan^3 x}{1 – 3 \tan^2 x}
    $$

乘积到和的恒等式

  1. 正弦与余弦的乘积
    $$
    \sin a \cos b = \frac{1}{2} [\sin(a + b) + \sin(a – b)]
    $$
  2. 余弦与余弦的乘积
    $$
    \cos a \cos b = \frac{1}{2} [\cos(a + b) + \cos(a – b)]
    $$
  3. 正弦与正弦的乘积
    $$
    \sin a \sin b = \frac{1}{2} [\cos(a – b) – \cos(a + b)]
    $$

和到乘积的恒等式

  1. 正弦的和与差
    $$
    \sin a + \sin b = 2 \sin\left(\frac{a + b}{2}\right) \cos\left(\frac{a – b}{2}\right)
    $$
    $$
    \sin a – \sin b = 2 \cos\left(\frac{a + b}{2}\right) \sin\left(\frac{a – b}{2}\right)
    $$
  2. 余弦的和与差
    $$
    \cos a + \cos b = 2 \cos\left(\frac{a + b}{2}\right) \cos\left(\frac{a – b}{2}\right)
    $$
    $$
    \cos a – \cos b = -2 \sin\left(\frac{a + b}{2}\right) \sin\left(\frac{a – b}{2}\right)
    $$

反三角函数

积分

1.\(\int \arcsin x \, dx = x \arcsin x + \sqrt{1 – x^2} + C\)
2.\(\int \arccos x \, dx = x \arccos x – \sqrt{1 – x^2} + C\)
3.\(\int \arctan x \, dx = x \arctan x – \frac{1}{2} \ln(1 + x^2) + C\)
4.\(\int \text{arccot } x \, dx = x \text{arccot } x + \frac{1}{2} \ln(1 + x^2) + C\)
5.\(\int \text{arcsec } x \, dx = x \text{arcsec } x – \ln|x + \sqrt{x^2 – 1}| + C\)
6.\(\int \text{arccsc } x \, dx = x \text{arccsc } x + \ln|x + \sqrt{x^2 – 1}| + C\)

求导

1.\(\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1 – x^2}}\)
2.\(\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1 – x^2}}\)
3.\(\frac{d}{dx}(\arctan x) = \frac{1}{1 + x^2}\)
4.\(\frac{d}{dx}(\text{arccot } x) = -\frac{1}{1 + x^2}\)
5.\(\frac{d}{dx}(\text{arcsec } x) = \frac{1}{|x|\sqrt{x^2 – 1}}\)
6.\(\frac{d}{dx}(\text{arccsc } x) = -\frac{1}{|x|\sqrt{x^2 – 1}}\)

恒等变换

基本恒等式

  1. 反函数关系
    $$
    \arcsin x + \arccos x = \frac{\pi}{2}
    $$
    $$
    \arctan x + \text{arccot } x = \frac{\pi}{2}
    $$
  2. 负数参数
    $$
    \arcsin(-x) = -\arcsin x
    $$
    $$
    \arccos(-x) = \pi – \arccos x
    $$
    $$
    \arctan(-x) = -\arctan x
    $$
    $$
    \text{arccot }(-x) = \pi – \text{arccot } x
    $$

和与差的恒等式

  1. 反正切的和
    $$
    \arctan a + \arctan b = \arctan\left(\frac{a + b}{1 – ab}\right) \quad \text{如果 } ab < 1 $$ $$ \arctan a + \arctan b = \pi + \arctan\left(\frac{a + b}{1 – ab}\right) \quad \text{如果 } ab > 1 \text{ 且 } a, b > 0
    $$
    $$
    \arctan a + \arctan b = -\pi + \arctan\left(\frac{a + b}{1 – ab}\right) \quad \text{如果 } ab > 1 \text{ 且 } a, b < 0
    $$
  2. 反正切的差
    $$
    \arctan a – \arctan b = \arctan\left(\frac{a – b}{1 + ab}\right)
    $$

反三角函数的其他恒等式

  1. 与三角函数的关系
    $$
    \sin(\arccos x) = \sqrt{1 – x^2}
    $$
    $$
    \cos(\arcsin x) = \sqrt{1 – x^2}
    $$
    $$
    \tan(\arcsin x) = \frac{x}{\sqrt{1 – x^2}}
    $$
    $$
    \tan(\arccos x) = \frac{\sqrt{1 – x^2}}{x}
    $$
  2. 与对数的关系
    $$
    \arcsin x = -i \ln\left(ix + \sqrt{1 – x^2}\right)
    $$
    $$
    \arccos x = -i \ln\left(x + i\sqrt{1 – x^2}\right)
    $$
    $$
    \arctan x = \frac{i}{2} \ln\left(\frac{1 – ix}{1 + ix}\right)
    $$
暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇